Blair, R. B. Land use and avian species diversity along an urban gradient. Ecol. Appl. 6, 506–519. https://doi.org/10.2307/2269387 (1996).
Google Scholar
Suarez-Rubio, M. & Krenn, R. Quantitative analysis of urbanization gradients: A comparative case study of two European cities. J. Urban Ecol. 4, 1–14. https://doi.org/10.1093/jue/juy027 (2018).
Google Scholar
United Nations, D. o. E. a. S. A., Population Division. World Urbanization Prospects: The 2018 Revision, Online Edition. https://esa.un.org/unpd/wup/Publications; accessed 27 Feb 2019.> (Department of Economic and Social Affairs, Population Division, 2018).
Marzluff, J. M. Avian Ecology and Conservation in an Urbanizing World 19–47 (Springer, 2001).
Google Scholar
Whittaker, K. A. & Marzluff, J. M. Species-specific survival and relative habitat use in an urban landscape during the postfledging period. Auk 126, 288–299. https://doi.org/10.1525/auk.2009.07136 (2009).
Google Scholar
Shochat, E., Warren, P. S., Faeth, S. H., McIntyre, N. E. & Hope, D. From patterns to emerging processes in mechanistic urban ecology. Trends Ecol. Evol. 21, 186–191. https://doi.org/10.1016/j.tree.2005.11.019 (2006).
Google Scholar
McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260. https://doi.org/10.1016/j.biocon.2005.09.005 (2006).
Google Scholar
Perrin, A., Glaizot, O. & Christe, P. Worldwide impacts of landscape anthropization on mosquito abundance and diversity: A meta-analysis. Glob. Chang. Biol. 28, 6857–6871. https://doi.org/10.1111/gcb.16406 (2022).
Google Scholar
Suarez-Rubio, M. et al. Bird diversity along an urban to rural gradient in large tropical cities peaks in mid-level urbanization. PeerJ https://doi.org/10.7717/peerj.16098 (2023).
Google Scholar
Clergeau, P., Croci, S., Jokimaki, J., Kaisanlahti-Jokimaki, M. L. & Dinetti, M. Avifauna homogenisation by urbanisation: Analysis at different European latitudes. Biol. Conserv. 127, 336–344. https://doi.org/10.1016/j.biocon.2005.06.035 (2006).
Google Scholar
McKinney, M. L. Urbanization, biodiversity, and conservation the impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. BioScience 52, 883–890 (2002).
Google Scholar
Alberti, M. The effects of urban patterns on ecosystem function. Int. Reg. Sci. Rev. 28, 168–192. https://doi.org/10.1177/0160017605275160 (2016).
Google Scholar
Seress, G. et al. Impact of urbanization on abundance and phenology of caterpillars and consequences for breeding in an insectivorous bird. Ecol. Appl. Publ. Ecol. Soc. Am. 28, 1143–1156. https://doi.org/10.1002/eap.1730 (2018).
Google Scholar
Renner, S. C. et al. Food preferences of winter bird communities in different forest types. PLoS One 7, e53121. https://doi.org/10.1371/journal.pone.0053121 (2012).
Google Scholar
Proppe, D. S., Sturdy, C. B. & St Clair, C. C. Anthropogenic noise decreases urban songbird diversity and may contribute to homogenization. Glob. Chang. Biol 19, 1075–1084. https://doi.org/10.1111/gcb.12098 (2013).
Google Scholar
Lepczyk, C. A. et al. in Ecology and Conservation of Birds in Urban Environments (eds Enrique Murgui & M Hedblom) Ch. Chapter 2, 13–33 (Springer, 2017).
Murgui, E. & Hedblom, M. Ecology and Conservation of Birds in Urban Environments (Springer, 2017).
Google Scholar
Ferraguti, M. et al. Does land-use and land cover affect vector-borne diseases? A systematic review and meta-analysis. Landsc. Ecol. 38, 2433–2451. https://doi.org/10.1007/s10980-023-01746-3 (2023).
Google Scholar
Bichet, C. et al. Urbanization, trace metal pollution, and malaria prevalence in the house sparrow. PLoS One 8, e53866. https://doi.org/10.1371/journal.pone.0053866 (2013).
Google Scholar
Buyantuyev, A. & Wu, J. Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landsc. Ecol. 25, 17–33. https://doi.org/10.1007/s10980-009-9402-4 (2009).
Google Scholar
Ferraguti, M. et al. Effects of landscape anthropization on mosquito community composition and abundance. Sci. Rep. 6, 29002. https://doi.org/10.1038/srep29002 (2016).
Google Scholar
Biard, C. et al. Growing in cities: An urban penalty for wild birds? A study of phenotypic differences between urban and rural great tit chicks (Parus major). Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00079 (2017).
Google Scholar
Balen, J. H. V. A comparative sudy of the breeding ecology of the great tit parus majorin different habitats. Ardea 38–90, 1–93. https://doi.org/10.5253/arde.v61.p1 (2002).
Google Scholar
Paaijmans, K. P. & Thomas, M. B. The influence of mosquito resting behaviour and associated microclimate for malaria risk. Malar. J. 10, 183. https://doi.org/10.1186/1475-2875-10-183 (2011).
Google Scholar
Vanderberg, J. P. & Yoeli, M. Effects of temperature on sporogonic development of Plasmodium berghei. J. Parasitol. 52, 559–564 (1966).
Google Scholar
LaPointe, D. A., Goff, M. L. & Atkinson, C. T. Thermal constraints to the sporogonic development and altitudinal distribution of avian malaria Plasmodium relictum in Hawai’i. J. Parasitol. 96, 318–324. https://doi.org/10.1645/GE-2290.1 (2010).
Google Scholar
Bailly, J. et al. Negative impact of urban habitat on immunity in the great tit Parus major. Oecologia 182, 1053–1062. https://doi.org/10.1007/s00442-016-3730-2 (2016).
Google Scholar
Chamberlain, D. E. et al. Avian productivity in urban landscapes: a review and meta-analysis. Ibis 151, 1–18. https://doi.org/10.1111/j.1474-919X.2008.00899.x (2009).
Google Scholar
Charmantier, A., Demeyrier, V., Lambrechts, M., Perret, S. & Grégoire, A. Urbanization is associated with divergence in pace-of-life in great tits. Front. Ecol. Evol. 5, 1–13. https://doi.org/10.3389/fevo.2017.00053 (2017).
Google Scholar
van Hoesel, W. et al. Management of ecosystems alters vector dynamics and haemosporidian infections. Sci. Rep. 9, 8779. https://doi.org/10.1038/s41598-019-45068-4 (2019).
Google Scholar
van Hoesel, W., Santiago Alarcon, D., Marzal, A. & Renner, S. C. Effects of forest structure on the interaction between avian hosts, dipteran vectors and haemosporidian parasites. BMC Ecol. 20, 47. https://doi.org/10.1186/s12898-020-00315-5 (2020).
Google Scholar
Paaijmans, K. P. et al. Temperature variation makes ectotherms more sensitive to climate change. Glob. Chang. Biol. 19, 2373–2380. https://doi.org/10.1111/gcb.12240 (2013).
Google Scholar
Ferraguti, M. et al. Ecological determinants of avian malaria infections: An integrative analysis at landscape, mosquito and vertebrate community levels. J. Anim. Ecol. 87, 727–740 (2018).
Google Scholar
Tchoumbou, M. A. et al. Effect of deforestation on prevalence of avian haemosporidian parasites and mosquito abundance in a tropical rainforest of Cameroon. Int. J. Parasitol. 50, 63–73. https://doi.org/10.1016/j.ijpara.2019.10.006 (2020).
Google Scholar
Valkiūnas, G. Avian Malaria Parasites and Other Haemosporidia (CRC Press, 2005).
Renner, S. C. et al. Forests of opportunities and mischief: disentangling the interactions between forests, parasites and immune responses. Int. J. Parasitol. 46, 571–579. https://doi.org/10.1016/j.ijpara.2016.04.008 (2016).
Google Scholar
Czech, B., Krausman, P. R. & Devers, P. K. Economic associations among causes of species endangerment in the United States. BioScience 50, 593–601 (2000).
Google Scholar
Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos 118, 1883–1891. https://doi.org/10.1111/j.1600-0706.2009.17643.x (2009).
Google Scholar
Sorace, A. & Gustin, M. Bird species of conservation concern along urban gradients in Italy. Biodivers. Conserv. 19, 205–221. https://doi.org/10.1007/s10531-009-9716-1 (2010).
Google Scholar
Jokimäki, J. & Huhta, E. Artificial Nest Predation and Abundance of Birds along an Urban Gradient. The Condor 102, 838–847 (2000).
Google Scholar
Chasar, A. et al. Prevalence and diversity patterns of avian blood parasites in degraded African rainforest habitats. Mol. Ecol. 18, 4121–4133. https://doi.org/10.1111/j.1365-294X.2009.04346.x (2009).
Google Scholar
Ludtke, B. et al. Associations of forest type, parasitism and body condition of two European passerines, Fringilla coelebs and Sylvia atricapilla. PLoS One 8, e81395. https://doi.org/10.1371/journal.pone.0081395 (2013).
Google Scholar
Troyo, A. et al. Seasonal profiles of Aedes aegypti (Diptera: Culicidae) larval habitats in an urban area of Costa Rica with a history of mosquito control. J. Vector Ecol. 33, 76–88. https://doi.org/10.3376/1081-1710(2008)33[76:spoaad]2.0.co;2 (2008).
Google Scholar
Medeiros-Sousa, A. R. et al. Diversity and abundance of mosquitoes (Diptera:Culicidae) in an urban park: Larval habitats and temporal variation. Acta Trop. 150, 200–209. https://doi.org/10.1016/j.actatropica.2015.08.002 (2015).
Google Scholar
Fokidis, H. B., Greiner, E. C. & Deviche, P. Interspecific variation in avian blood parasites and haematology associated with urbanization in a desert habitat. J. Avian Biol. 39, 300–310. https://doi.org/10.1111/j.2008.0908-8857.04248.x (2008).
Google Scholar
Santiago-Alarcon, D., Havelka, P., Pineda, E., Segelbacher, G. & Schaefer, H. M. Urban forests as hubs for novel zoonosis: blood meal analysis, seasonal variation in Culicoides (Diptera: Ceratopogonidae) vectors, and avian haemosporidians. Parasitology 140, 1799–1810. https://doi.org/10.1017/S0031182013001285 (2013).
Google Scholar
Santiago-Alarcon, D. et al. Parasites in space and time: A case study of haemosporidian spatiotemporal prevalence in urban birds. Int. J. Parasitol. 49, 235–246. https://doi.org/10.1016/j.ijpara.2018.08.009 (2019).
Google Scholar
Dimitrov, D. et al. Plasmodium spp.: An experimental study on vertebrate host susceptibility to avian malaria. Exp. Parasitol. 148, 1–16. https://doi.org/10.1016/j.exppara.2014.11.005 (2015).
Google Scholar
Marzal, A., de Lope, F., Navarro, C. & Moller, A. P. Malarial parasites decrease reproductive success: An experimental study in a passerine bird. Oecologia 142, 541–545. https://doi.org/10.1007/s00442-004-1757-2 (2005).
Google Scholar
Asghar, M., Hasselquist, D. & Bensch, S. Are chronic avian haemosporidian infections costly in wild birds?. J. Avian Biol. 42, 530–537 (2011).
Google Scholar
Knowles, S. C. L., Palinauskas, V. & Sheldon, B. C. Chronic malaria infections increase family inequalities and reduce parental fitness: Experimental evidence from a wild bird population. J. Evol. Biol. 23, 557–569. https://doi.org/10.1111/j.1420-9101.2009.01920.x (2010).
Google Scholar
Schoepf, I., Olson, S., Moore, I. T. & Bonier, F. Experimental reduction of haemosporidian infection affects maternal reproductive investment, parental behaviour and offspring condition. Proc. Biol. Sci. R. Soc. 289, 20221978. https://doi.org/10.1098/rspb.2022.1978 (2022).
Google Scholar
Campbell, T. W. & Ellis, C. K. Avian and Exotic Animal Hematology and Cytology (John Wiley & Sons, 2007).
Müller, C., Jenni-Eiermann, S. & Jenni, L. Heterophils/Lymphocytes-ratio and circulating corticosterone do not indicate the same stress imposed on Eurasian kestrel nestlings. Funct. Ecol. 25, 566–576. https://doi.org/10.1111/j.1365-2435.2010.01816.x (2011).
Google Scholar
Moreno, J., Merino, S., MartÍnez, J., Sanz, J. & Arriero, E. Heterophil/lymphocyte ratios and heat-shock protein levels are related to growth in nestling birds. Écoscience 9, 434–439. https://doi.org/10.1080/11956860.2002.11682731 (2016).
Google Scholar
Peig, J. & Green, A. J. The paradigm of body condition: A critical reappraisal of current methods based on mass and length. Funct. Ecol. 24, 1323–1332. https://doi.org/10.1111/j.1365-2435.2010.01751.x (2010).
Google Scholar
Gonzalez, G. et al. Immunocompetence and condition-dependent sexual advertisement in male house sparrows (Passer domesticus). J. Anim. Ecol. 68, 1225–1234. https://doi.org/10.1046/j.1365-2656.1999.00364.x (1999).
Google Scholar
Monrós, J. S., Belda, E. J. & Barba, E. Post-fledging survival of individual great tits: The effect of hatching date and fledging mass. Oikos 99, 481–488. https://doi.org/10.1034/j.1600-0706.2002.11909.x (2002).
Google Scholar
Brown, C. R. & Brown, M. B. Ectoparasites cause increased bilateral asymmetry of naturally selected traits in a colonial bird. J. Evol. Biol. 15, 1067–1075 (2002).
Google Scholar
De Coster, G. et al. Fluctuating asymmetry and environmental stress: Understanding the role of trait history. PLoS One 8, e57966. https://doi.org/10.1371/journal.pone.0057966 (2013).
Google Scholar
Helle, S., Huhta, E., Suorsa, P. & Hakkarainen, H. Fluctuating asymmetry as a biomarker of habitat fragmentation in an area-sensitive passerine, the Eurasian treecreeper (Certhia familiaris). Ecol. Indic. 11, 861–867. https://doi.org/10.1016/j.ecolind.2010.11.004 (2011).
Google Scholar
Lens, L., Dongen, S., Kark, S. & Matthysen, E. Fluctuating asymmetry as an indicator of fitness: Can we bridge the gap between studies?. Biol. Rev. 77, 27–38 (2002).
Google Scholar
Letters, E. Fluctuating and directional asymmetry in natural bird populations exposed to different levels of habitat disturbance , as revealed by mixture analysis. (2000).
Cator, L. J. et al. The role of vector trait variation in vector-borne disease dynamics. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00189 (2020).
Google Scholar
East, M. L. & Hofer, H. The use of radio-tracking for monitoring Great Tit Parus major behaviour: A pilot study. Ibis 128, 103–114. https://doi.org/10.1111/j.1474-919X.1986.tb02097.x (1986).
Google Scholar
European Environmental Agency. European Urban Atlas. https://www.eea.europa.eu/ds_resolveuid/5b71306a54ad9115e93429a251315e71> (EU, 2011).
Riddington, R. & Gosler, A. G. Differences in reproductive success and parental qualities between habitats in the Great Tit Parus major. Ibis 137, 371–378. https://doi.org/10.1111/j.1474-919X.1995.tb08035.x (2008).
Google Scholar
Hargitai, R. et al. Effects of breeding habitat (woodland versus urban) and metal pollution on the egg characteristics of great tits (Parus major). Sci. Total Environ. 544, 31–38. https://doi.org/10.1016/j.scitotenv.2015.11.116 (2016).
Google Scholar
Eck, S. et al. Measuring Birds/Vögel Vermessen (Christ Media, 2011).
Svensson, L. Identification Guide to European Passerines (British Trust for Ornithology, 1992).
Godfrey, R. D. Jr., Fedynich, A. M. & Pence, D. B. Quantification of hematozoa in blood smears. J. Wildl. Dis. 23, 558–565. https://doi.org/10.7589/0090-3558-23.4.558 (1987).
Google Scholar
De Angeli Dutra, D. et al. Haemosporidian infections affect antioxidant defences in great tits Parus major but are not related to exposure to aerial pollutants. Parasitol. Open https://doi.org/10.1017/pao.2017.4 (2017).
Google Scholar
Clark, N. J., Adlard, R. D. & Clegg, S. M. Molecular and morphological characterization of Haemoproteus (Parahaemoproteus) ptilotis, a parasite infecting Australian honeyeaters (Meliphagidae), with remarks on prevalence and potential cryptic speciation. Parasitol. Res. 114, 1921–1928. https://doi.org/10.1007/s00436-015-4380-8 (2015).
Google Scholar
Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling?. Ecography 37, 191–203 (2014).
Google Scholar
Arnold, T. W. Uninformative parameters and model selection using Akaike’s Information Criterion. J. Wildl. Manage. 74, 1175–1178. https://doi.org/10.2193/2009-367 (2010).
Google Scholar
Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. R package version 1 (2014).
Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).
R: A language and environment for statistical computing. v. 4.2.3 (R Foundation for Statistical Computing. http://www.r-project.org/, Vienna, Austria, 2023).
Santiago-Alarcon, D., Havelka, P., Schaefer, H. M. & Segelbacher, G. Bloodmeal analysis reveals avian Plasmodium infections and broad host preferences of Culicoides (Diptera: Ceratopogonidae) vectors. PLoS One 7, e31098. https://doi.org/10.1371/journal.pone.0031098 (2012).
Google Scholar
Santiago-Alarcon, D., Palinauskas, V. & Schaefer, H. M. Diptera vectors of avian Haemosporidian parasites: Untangling parasite life cycles and their taxonomy. Biol. Rev. Camb. Philos. Soc. 87, 928–964. https://doi.org/10.1111/j.1469-185X.2012.00234.x (2012).
Google Scholar
Arnfield, A. J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 23, 1–26. https://doi.org/10.1002/joc.859 (2003).
Google Scholar
Gross, W. B. & Siegel, H. S. Evaluation of the heterophil/lymphocyte ratio as a measure of stress in chickens. Avian Dis. https://doi.org/10.2307/1590198 (1983).
Google Scholar
Grieco, F. Greater food availability reduces tarsus asymmetry in nestling blue tits. Condor https://doi.org/10.1093/condor/105.3.599 (2003).
Google Scholar
Bańbura, J. et al. Body condition parameters of nestling great titsparus majorin relation to experimental food supplementation. Acta Ornithol. 46, 207–212. https://doi.org/10.3161/000164511×625991 (2011).
Google Scholar
Corsini, M. et al. Growing in the city: Urban evolutionary ecology of avian growth rates. Evol. Appl. 14, 69–84. https://doi.org/10.1111/eva.13081 (2021).
Google Scholar
Levin, I. I. et al. Hippoboscid-transmitted Haemoproteus parasites (Haemosporida) infect Galapagos Pelecaniform birds: evidence from molecular and morphological studies, with a description of Haemoproteus iwa. Int. J. Parasitol. 41, 1019–1027. https://doi.org/10.1016/j.ijpara.2011.03.014 (2011).
Google Scholar
Jarvi, S. I., Schultz, J. J. & Atkinson, C. T. Pcr diagnostics underestimate the prevalence of avian malaria (Plasmodium Relictum) in experimentally-infected passerines. J. Parasitol. 88, 153–158. https://doi.org/10.1645/0022-3395(2002)088[0153:Pdutpo]2.0.Co;2 (2002).
Google Scholar
Chaves, L. F. et al. Climatic variability and landscape heterogeneity impact urban mosquito diversity and vector abundance and infection. Ecosphere https://doi.org/10.1890/es11-00088.1 (2011).
Google Scholar
Rappole, J. H., Derrickson, S. R. & Hubalek, Z. Migratory birds and spread of West Nile virus in the Western Hemisphere. Emerg. Infect. Dis. 6, 319–328. https://doi.org/10.3201/eid0604.000401 (2000).
Google Scholar
Chace, J. F. & Walsh, J. J. Urban effects on native avifauna: a review. Landsc. Urban Plan. 74, 46–69. https://doi.org/10.1016/j.landurbplan.2004.08.007 (2006).
Google Scholar